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ABSTRACT

We expose the limitations of existing frameworks designed for the

evaluation of audiovisual biometric authentication algorithms. The

weakness of a classical audiovisual authentication system is uncov-

ered when confronted to realistic deliberate impostors. A client-

dependent audiovisual synchrony measure is used in order to deal

with deliberate impostors and three new fusion strategies and their

performance against random and deliberate impostors are studied.

Index Terms— Robustness, Speaker recognition, Face recogni-

tion

1. INTRODUCTION

Numerous studies have exposed the limits of biometric identity ver-

ification based on a single modality (such as fingerprint, iris, hand-

written signature, voice, face). The talking face modality, that in-

cludes both face recognition and speaker verification, is a natural

choice for multimodal biometrics. Talking faces provide richer op-

portunities for verification than does any ordinary multimodal fu-

sion. The signal contains not only voice and image but also a third

source of information: the simultaneous dynamics of these features.

Natural lip motion and the corresponding speech signal are synchro-

nized.

However, this specificity is often forgotten and most of the ex-

isting talking-face authentication systems are based on the fusion of

the scores of two separate modules of face verification and speaker

verification, as described in section 2. Even though this prevalent

paradigm may lead to the best performance on widespread evalu-

ation frameworks based on random impostor scenarios, the ques-

tion of its performance against real life impostor attacks is studied

in section 3. Section 4 is devoted to the description of the client-

dependent audiovisual synchrony measure introduced in order to

tackle these attacks and deals with the highlighted weakness of the

current talking-face authentication systems. Three fusion strategies

are finally introduced and compared in section 5.

2. AUDIO-VISUAL BIOMETRICS

Most of the existing talking-face authentication systems are based

on the fusion of two scores, obtained through speaker and face veri-

fication [1]. In order to show the limits of this kind of approach, the

first mandatory step is to develop such a system.

2.1. Face verification

The classical eigenface approach, combined with the Mahalanobis

distance, is used in our implementation of the face verification mod-

ule [2]. We will mostly focus on its specificities: using every reliable

detected face available in a video sequence.

Once face detection is applied on each frame of the video se-

quence (using Fasel et al.’s algorithm [3]), distance from face space

(DFFS) is computed for every detected face as the distance between

the face and its projection on the face space (obtained via principal

component analysis) [2]. We define a reliability coefficient r as the

inverse of the DFFS (r = 1/DFFS): the higher, the more reliable.

Finally, a detected face is kept as correct if its r coefficient is higher

than a threshold θr = 2/3 · rmax, where rmax is the maximum

value of r on the current video sequence. Figure 1 shows (from left

to right) the face corresponding to r = rmax, an example of cor-

rectly detected face and an example of rejected face. Only eigenface

Fig. 1. Selection of reliable faces

features corresponding to correctly detected face are kept to describe

the face appearing in the video sequence. Finally, at test time, the

Mahalanobis distance is computed between the eigenface features

(of dimension 80, in our case) of each of the N correctly detected

faces of the enrollment video sequence and each of the M correctly

detected face of the test video sequence, leading to N×M distances.

The opposite of the mean of these N × M distances is taken as the

score Sf of the face verification module.

2.2. Speaker verification

The speaker verification module is also based on a very classical

approach: gaussian mixture model with universal background model

(GMM-UBM) [4].

First, silence detection is performed, based on a bi-gaussian mod-

eling of the acoustic energy distribution. Then, MFCC features are

extracted on a 20 ms long window every 10 ms (12 MFCC with first

and second derivatives), while only keeping the features correspond-

ing to non-silent windows. Using the Expectation-Maximization

(EM) algorithm, a 256 gaussians mixture model (GMM) – called

Universal Background Model (UBM) – is trained using a set of record-

ings of numerous speakers in order to maximally cover the variabil-

ity among speakers. Using the MFCC features extracted from the

enrollment sequence, Maximum A Posteriori (MAP) adaptation is

applied in order to get a client-dependent GMM from the UBM [4].

At test time, MFCC features are extracted from the test sequence

and are compared to both the client-dependent GMM and the UBM:
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the likelihood ratio is finally taken as the score Ss of the speaker

verification module.

2.3. Fusion

The fusion module is also very classical [5]: it is based on the weighted

sum of normalized speaker and face verification scores Ss and Sf.

Weighted sum of face and speaker verification scores is mean-

ingful only if Ss and Sf vary in the same range of values. Therefore,

a first step of σ/μ normalization is applied in order to make sure

that normalized scores Ss and Sf have comparable values. For that

purpose, a development set should be available, that contains a col-

lection of actual test scores Ss and Sf allowing to estimate the mean

μs and μf and standard deviation σs and σf of false claim scores.

Normalization of test scores is then performed:

Ss =
Ss − μs

σs
and Sf =

Sf − μf
σf

(1)

From this point, in order to make the rest of the paper more read-

able, we will assume that scores are already normalized and we will

therefore denote the normalized score S instead of S.

The fusion is then performed by computing a weighted sum of the

normalized speaker and face verification scores Ss and Sf:

S0 = wsSs + wfSf with wf + ws = 1 (2)

Optimal weights ws and wf are estimated on the development set by

minimizing the weighted error rate defined in next section.

3. LIMITATIONS OF AV BIOMETRICS

In order to evaluate and compare performances of biometric au-

thentication systems, reproducible evaluation frameworks are set up.

They usually consist of a database (containing biometric samples of

a large collection of people) and associated evaluation protocols that

describe the list of true and false claims that have to be tested. In

the particular case of audiovisual biometrics, one can refer to the

XM2VTS, MyIDEA, BioSecure, IV2 or BANCA databases [6]. In

the rest of the paper, we will make use of the latter and its associated

Pooled (P) protocol. However, the limitations that we will expose

are common to all these evaluation frameworks.

3.1. Evaluation

The BANCA audiovisual database contains 52 speakers divided into

2 groups G1 and G2 of 26 speakers each (13 females and 13 males).

This division into 2 disjoint groups allows to use G2 as a develop-

ment set when testing on G1 (and reciprocally). Twelve sessions

were recorded in three different conditions (controlled, adverse and

degraded). In each session and for each speaker, two recordings were

acquired: one true claim access where the speaker pronounces dig-

its and his/her (fake) own address and one false claim access where

he/she pronounces digits and the address of another person of the

same group.

According to the P protocol, for each person, the true claim ac-

cess of the controlled session #1 is used as the enrollment data. True

claim accesses of sessions #2 to #4, #6 to #8 and #10 to #12 are

used as client accesses, while every twelve false claims accesses are

used as impostor accesses. Therefore, this makes 234 client and 312

impostor accesses per group.

In order to proceed with the comparison of our different sys-

tems, we will evaluate their performance using the weighted error

rate (WER) as defined in equation (3): the cost of false acceptance

(FAR stands for false acceptance rate) is ten times higher than the

cost of false rejection (FRR, for false rejection rate). Therefore, min-

imizing WER makes the system more difficult to fool but also more

likely to reject genuine users.

WER =
1

11
(FRR (θ) + 10 · FAR (θ)) (3)

The development set is used to optimize the decision threshold θ in

order to minimize the error rate and it is consequently applied on the

test set. Reported error rates will be complemented by confidence

intervals at 95%, as defined in [7].

3.2. Deliberate impostors

The only information about his/her target that is known by the im-

postor is his/her name and address. No real effort is performed by

the impostor while trying to impersonate his/her target. Therefore,

these impostor accesses (that we will refer to as random impostor ac-

cesses afterwards) appear to be quite unrealistic. Only a fool would

attempt to imitate a person knowing so little about them.

In real life, an impostor would have acquired some information

about his/her target before trying to impersonate him/her. In the case

of audiovisual biometrics, it should be very easy to acquire a picture

of the face of the target and a recording of his/her voice (thanks to

a telephone call, for example). Showing the picture of the face of

the target while playing the audio recording of his/her voice would

then be enough to completely fool a talking-face authentication sys-

tem based on the score fusion of two modules of face and speaker

verification.

Such deliberate impostor attacks were simulated. Every original

BANCA false claim access was modified into a sequence made of

the combination of a video sequence showing a moving picture (as

shown in figure 2) and the audio of a genuine access of the target.

We will refer to these new impostor accesses as deliberate impostor

accesses afterwards.

Fig. 2. Deliberate impostor attack

3.3. Results

Table 1 shows the effect of deliberate impostor attacks on the initial

systems described in section 2. Speaker and face verification mod-

ules are completely fooled by deliberate impostors and so it goes for

their fusion (for which the weighted error rate increases from 6% to

90%).
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Modality Random imp. Deliberate imp.

Speaker Ss 6.0 ± 2.0% 92.1 ± 1.6%
Face Sf 7.9 ± 1.3% 72.7 ± 4.8%
Fusion S0 6.3 ± 2.2% 90.2 ± 1.9%

Table 1. Weighted error rate for the initial systems

4. SYNCHRONY VERIFICATION

There are many ways of dealing with this kind of deliberate impostor

attacks. The first solution is to ask for the enunciation of a different

utterance (chosen randomly) for each new access, thus preventing

the prior recording of the voice of the target. An alternative is to

analyze the motion of the detected face and look for a suspicious

behavior [8]. The third solution is to study the degree of correspon-

dence between the shape and motion of the lip and the acoustic sig-

nal [9].

4.1. Client-dependent synchrony measure

In [10] we introduced a new biometric modality based on a client-

dependent measure of the synchrony between acoustic and visual

speech features. We will quickly overview its main principle and

performance.

Every 10 ms, a 24-dimensional acoustic feature vector (12 MFCC

coefficients and their first derivatives) is extracted and will be de-

noted as X ∈ R
n in the rest of the paper. As far as visual feature

vectors are concerned, we chose to extract Discrete Cosine Trans-

form (DCT) of the mouth area. Figure 3 summarizes this process.

For each frame of the sequence, face is detected and a Viola & Jones

mouth detector is applied to locate the mouth area [11], from which

28 DCT coefficients corresponding to the low spatial frequencies

are computed. In order to equalize the sample rates of acoustic and

visual features (initially 100 Hz and 25 Hz respectively), visual fea-

tures are linearly interpolated. First derivatives are then appended,

leading to 56-dimensional visual feature vectors Y ∈ R
m.

Fig. 3. Visual features extraction

Using the acoustic and visual features X and Y extracted from

the enrollment sequence, co-inertia analysis (CoIA) is applied in or-

der to compute the client-dependent synchrony model (A,B). The

columns of matrices A and B are vectors ak and bk, k ≤ min (n, m),

that are defined recursively as the projection vectors maximizing the

covariance between X and Y :

(a1,b1) = argmax
(a,b)

cov
`
atX, btY

´
(4)

The same maximization in the orthogonal subspaces to a
t
1X and

b
t
1Y allows the computation of a2 and b2, and so on for the other

ak and bk. More information on CoIA can be found in [10].

At test time, acoustic and visual feature vectors XΓ and Y Γ of

the test sequence Γ are extracted and a measure Sc of their syn-

chrony is computed using the synchrony model
`
A

λ,Bλ
´

of the

claimed identity λ:

Sc =
1

D

DX
k=1

corr
“
a

λ
k

t
XΓ,bλ

k

t
Y Γ

”
(5)

where D is the number of dimensions actually used to compute the

correlation. In our case, D = 18 showed to be the most efficient

value for D, and will be used in the rest of the paper [10].

4.2. Results

Table 2 shows the effect of deliberate impostor attacks on the syn-

chrony verification module. It clearly shows that this modality is

intrinsically robust to deliberate impostors though its performance

on random impostors is worse than the fusion of speaker and face

verification.

Modality Random imp. Deliberate imp.

Synchrony Sc 7.7 ± 1.1% 6.9 ± 0.1%

Table 2. Weighted error rate for the synchrony modality

5. FUSION

Therefore, we propose to make use of the obvious complementar-

ity between the initial audiovisual biometric system and this new

modality based on client-dependent audiovisual synchrony measure.

Three strategies of fusion will be presented and their performance

compared.

5.1. Strategies

The first fusion strategy is the direct extension of the one presented in

section 2. As shown in equation (6), the fused score S1 is a weighted

sum of three normalized monomodal scores (those weights being op-

timized on the development set in order to minimize the error rate):

S1 = wsSs + wfSf + wcSc with
X

w = 1 (6)

As seen in figure 4, impostor synchrony scores (either random

or deliberate) are globally lower than true claim scores. The sec-

ond fusion strategy benefits from this property and is designed to

decrease the value of score S1 for claims with low synchrony verifi-

cation score Sc, as shown in equation (7):

S2 = α (Sc) S1 (7)

where α is the cumulative distribution function of true claims syn-

chrony scores:

α (Sc) = p (s ≤ Sc| true claim) (8)

The function α is drawn as a thick black line in the top right corner

of figure 4. It is estimated using the true claims synchrony scores of

the development set.

The third fusion strategy benefits from the complementarity of

the first fusion strategy and the synchrony verification module – the

former being very sensitive to deliberate impostors but more efficient
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Fig. 4. Synchrony scores distributions and their corresponding cu-

mulative distribution functions (in the top right corner)

against random impostors, while the latter is very robust to attacks,

though it is less efficient against random impostors:

S3 = α (Sc) S1 + [1 − α (Sc)] Sc (9)

As shown in equation (9), this last strategy is based on an adaptive

weighted sum of (normalized) scores. More weight is given to the

synchrony verification module if the synchrony measure is low; and

reciprocally its weight is decreased when the synchrony measure is

higher and the first strategy fusion can actually be trusted.

5.2. Results

Table 3 summarizes the performance of the original fusion and the

three proposed strategies. While the first one (weighted sum of the

three modalities – speaker, face and synchrony) does not bring any

improvement, the second and third ones make the audiovisual bio-

metric system robust to deliberate impostors, while maintaining its

raw performance against random impostors.

Modality Random imp. Deliberate imp.

Fusion S0 6.3 ± 2.2% 90.2 ± 1.9%
Fusion S1 7.5 ± 2.5% 90.0 ± 1.9%
Fusion S2 6.6 ± 1.8% 24.2 ± 4.6%
Fusion S3 6.4 ± 1.8% 14.1 ± 3.5%

Table 3. Weighted error rate for the three new fusion strategies

6. CONCLUSION AND PERSPECTIVES

We exposed the limitations of existing evaluation frameworks for

audiovisual biometric authentication algorithms and proposed more

realistic scenarios where impostors no longer perform random at-

tacks and, instead, use material about the target that they acquired

previously to fool the system. A client-dependent audiovisual syn-

chrony measure is presented as a solution to this major issue. Three

different fusion strategies try to benefit from its high robustness to

deliberate impostors and we show that it is possible to drastically

diminish the sensitiveness of a classical audiovisual biometric au-

thentication algorithm to deliberate imposture while maintaining its

performance in the genuine evaluation framework.

Our approach based on audiovisual synchrony measure should

also be evaluated on higher-effort forgeries such as voice conver-

sion and face animation that would lead to synchronous audiovisual

speech that resemble the target. As a matter of fact, voice conver-

sion would allow an impostor to fool a system based on a random

prompt and face animation techniques could possibly defeat algo-

rithms checking the liveness from image motion: commercial soft-

wares are already available, allowing to realistically animate a pic-

ture according to a given voice recording. Nonetheless, since our

approach is based on a client-specific synchrony model, it could pos-

sibly still show strong robustness to this high-effort impostor attacks.
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